Monday, 8 August 2016

Larvicidal Activity of Metabolites of Metarhizium anisopliae against Aedes and Culex Mosquitoes

The objective of this study was to determine the larvicidal effects of entomopathogenic fungus Metarhizim anisopliae against degue, chikunguniya and filariasis disease vectors. The fungus was cultivated in the complete brothmedia and the extracelluar metabolites were filtered by using Whatman no.1 filter paper. Further, the filterd metabolites were conducted for its larvicidal efficacy against all instars of Ae. egypti and Cx. quenquefacistus, at five different significant concentrations (2.35, 2.65, 2.83, 2.95 and 3.05ppm). Larvae of Cx. quenquefacistus were found more susceptible than larvae of Ae. aegypti. The hightest LC99 value (663.74ppm) was resulted in the first instar of Cx. quinquefasciatus while the lowest LC99 value (309.02ppm) was found in third instar of Ae. aegypti. The findings of this preliminary study gives overview idea about the different larvicidal properties of the metabolites of M. anisopliea. Additionally it will help us to find specific larvicidal compound for mosquito borne disease control applications
Entomopathogenic fungi

Culex and Aedes are major vectors of zoonotic diseases in tropics. It causes morbidity of millions of persons resulting in loss of mandays causing economic loss. Culex quinquefasciatus, a vectore of lymphetic filariasis, is widely distributed. On the other hand, Aedes aegypti is a vector of dengue, chikunguniya, yellow fever and that carries the arbovirus responsible for these diseases is also widely distributed in the troical and subtropical zones. In Indian scenario, almost the entire country is endemic to the mosquito borne diseasses due to favorable ecological conditions. To prevent mosquito-borne diseases and improve public health, it is necessary to control them. Mosquito in the larval stages are attractive target for pesticides because mosquitoes breed in water, and thus it is easy to deal with them in this habitat.


Numerous chemical larvicides are known to have toxic effects beyond their target pests including toxic effects to animals and human. The opportunity to substitute safer, more selective and biodegradable biocontrol agent can provide important ecological benefits. The use of microbial larvicides could decrease our dependence on chemical insecticides. The entomopathogenic fungus life cycle is associated with the synthesis and secretion of different active metabolites, including extracellular enzymes and low molecular weight compounds (toxins). These toxic byproducts mainly help the organisms to withstand and protect themselves from invading pathogens. In general fungi produce a wide range of secondary metabolites with diverse biological activites like antibiotics, cytotoxic substances, insecticides compound that promote or inhibit growth, attractor, repellent etc

Get PDF Link Here